Overfitting and Cross validation Part 2

- Introduction - Combinations and Iterations

INTRODUCTION

 The number of different groups of k objects that can be selected from a set of n objects is equal to

$$_{n}C_{k}=rac{n!}{k!(n-k)!}=inom{n}{k}$$

- It is the number of combinations of n objects taken k at a time. This
 number is referred to as n choose k
- For example

The combinations of {1,2,3,4} taken k=2 at a time are

$$\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}$$

there are 6 = 4! / [(2!)(4-2) !] combinations

```
import numpy as np
import pandas as pd
# library for combinatorial numbers
from scipy.special import comb
# library for combinations
import itertools
# Examples
# 7 choose 3
comb(7,3)
35.0
```

```
list1 = ['a','b','c','d']
n = len(list1)
n

# Number of sets with two elements
comb(4,2)
6.0

# all possible sets with two elements
list(itertools.combinations(list1,2))

[('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')]
```

```
list1 = ['a','b','c','d']
n = len(list1)
n

# Number of sets with 3 elements
comb(4,3)

4.0

# all possible sets with 3 elements
list(itertools.combinations(list1,3))

[('a', 'b', 'c'), ('a', 'b', 'd'), ('a', 'c', 'd'), ('b', 'c', 'd')])]
```

EXAMPLE 2 – feature-cv7.ipynb

```
df = pd.read_csv('Credit.csv')
df[:5]
```

	Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity	Balance
0	14.891	3606	283	2	34	11	Male	No	Yes	Caucasian	333
1	106.025	6645	483	3	82	15	Female	Yes	Yes	Asian	903
2	104.593	7075	514	4	71	11	Male	No	No	Asian	580
3	148.924	9504	681	3	36	11	Female	No	No	Asian	964
4	55.882	4897	357	2	68	16	Male	No	Yes	Caucasian	331

```
df = df.loc[:,df.dtypes != object]
df[:5]
```

← select numerical columns only

	Income	Limit	Rating	Cards	Age	Education	Balance
0	14.891	3606	283	2	34	11	333
1	106.025	6645	483	3	82	15	903
2	104.593	7075	514	4	71	11	580
3	148.924	9504	681	3	36	11	964
4	55.882	4897	357	2	68	16	331

```
list(df.columns)
['Income', 'Limit', 'Rating', 'Cards', 'Age', 'Education', 'Balance']
n = len(df.columns)
n
7
# Number of sets with two column names
comb(7,2)
21.0
# all sets of two column names
list(itertools.combinations(df.columns,2))
                             ('Limit', 'Cards'),
                                                           ('Rating', 'Balance'),
[('Income', 'Limit'),
                             ('Limit', 'Age'),
('Income', 'Rating'),
                                                           ('Cards', 'Age'),
                                                           ('Cards', 'Education'),
 ('Income', 'Cards'),
                             ('Limit', 'Education'),
                                                           ('Cards', 'Balance'),
('Income', 'Age'),
                             ('Limit', 'Balance'),
 ('Income', 'Education'),
                                                           ('Age', 'Education'),
                             ('Rating', 'Cards'),
                                                           ('Age', 'Balance'),
 ('Income', 'Balance'),
                             ('Rating', 'Age'),
                                                           ('Education', 'Balance')]
 ('Limit', 'Rating'),
                             ('Rating', 'Education'),
```

Number of sets with 6 column names
comb(7,6)

7.0

all sets of 6 column names
list(itertools.combinations(df.columns,6))

[('Income', 'Limit', 'Rating', 'Cards', 'Age', 'Education'),
 ('Income', 'Limit', 'Rating', 'Cards', 'Age', 'Balance'),

('Income', 'Limit', 'Rating', 'Cards', 'Education', 'Balance'),

('Income', 'Limit', 'Rating', 'Age', 'Education', 'Balance'), ('Income', 'Limit', 'Cards', 'Age', 'Education', 'Balance'), ('Income', 'Rating', 'Cards', 'Age', 'Education', 'Balance'),

('Limit', 'Rating', 'Cards', 'Age', 'Education', 'Balance')]

Example 2 Best Model for Prediction

The Credit.csv file contains credit information from 400 customers

Balance (average credit card debt)

← response

- Age
- Cards (number of credit cards)
- Education (years of education)
- Income (in thousands of dollars)
- Limit (credit limit)
- Rating (credit rating)
- Gender
- Student (student status)
- Married (marital status)
- Ethnicity (Caucasian, African American or Asian)

Find the best model to predict the customer Balance using adj-R² and AIC

BEST REGRESSION MODEL

```
import numpy as np
import pandas as pd

import itertools

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
```

BEST REGRESSION MODEL

```
credit = pd.read_csv('Credit.csv')
credit[:5]
```

Υ

	Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity	Balance
0	14.891	3606	283	2	34	11	Male	No	Yes	Caucasian	333
1	106.025	6645	483	3	82	15	Female	Yes	Yes	Asian	903
2	104.593	7075	514	4	71	11	Male	No	No	Asian	580
3	148.924	9504	681	3	36	11	Female	No	No	Asian	964
4	55.882	4897	357	2	68	16	Male	No	Yes	Caucasian	331

```
(400, 11)
(n, p)
```

BEST REGRESSION MODEL – ENCODE CATEGORICAL VARS

credit[:5]

	Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity	Balance
0	14.891	3606	283	2	34	11	Male	No	Yes	Caucasian	333
1	106.025	6645	483	3	82	15	Female	Yes	Yes	Asian	903
2	104.593	7075	514	4	71	11	Male	No	No	Asian	580
3	148.924	9504	681	3	36	11	Female	No	No	Asian	964
4	55.882	4897	357	2	68	16	Male	No	Yes	Caucasian	331

	Income	Limit	Rating	Cards	Age	Education	Balance	Gender_Female	Student_Yes	Married_Yes	Ethnicity_Asian	Ethnicity_Caucasian
0	14.891	3606	283	2	34	11	333	0	0	1	0	1
1	106.025	6645	483	3	82	15	903	1	1	1	1	0
2	104.593	7075	514	4	71	11	580	0	0	0	1	0
3	148.924	9504	681	3	36	11	964	1	0	0	1	0
4	55.882	4897	357	2	68	16	331	0	0	1	0	1

BEST REGRESSION MODEL – ENCODE CATEGORICAL VARS

credit[:5]

	Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity	Balance
0	14.891	3606	283	2	34	11	Male	No	Yes	Caucasian	333
1	106.025	6645	483	3	82	15	Female	Yes	Yes	Asian	903
2	104.593	7075	514	4	71	11	Male	No	No	Asian	580
3	148.924	9504	681	3	36	11	Female	No	No	Asian	964
4	55.882	4897	357	2	68	16	Male	No	Yes	Caucasian	331

Υ

	Income	Limit	Rating	Cards	Age	Education	Balance	Gender_Female	Student_Yes	Married_Yes	Ethnicity_Asian	Ethnicity_Caucasian
0	14.891	3606	283	2	34	11	333	0	0	1	0	1
1	106.025	6645	483	3	82	15	903	1	1	1	1	0
2	104.593	7075	514	4	71	11	580	0	0	0	1	0
3	148.924	9504	681	3	36	11	964	1	0	0	1	0

331

55.882 4897

357

BEST REGRESSION MODEL – ENCODE CATEGORICAL VARS

credit2 = credit1.drop('Balance',axis=1)
credit2[:5]

	Income	Limit	Rating	Cards	Age	Education	Gender_Female	Student_Yes	Married_Yes	Ethnicity_Asian	Ethnicity_Caucasian
0	14.891	3606	283	2	34	11	0	0	1	0	1
1	106.025	6645	483	3	82	15	1	1	1	1	0
2	104.593	7075	514	4	71	11	0	0	0	1	0
3	148.924	9504	681	3	36	11	1	0	0	1	0
4	55.882	4897	357	2	68	16	0	0	1	0	1
cr	edit2.s	hape					How many r	nodels with	n 2 predicto	ors? →	comb(11,2)
(4	00, 11)										55.0
							How many r	nodels with	n 3 predicto	ors? →	comb(11,3)
											165.0
						How r	many models	with 0,1,,	11 predicto	ors? →	2**11
											2048

BEST REGRESSION MODEL – Split data into a train and a test set

Build Model with all predictors (finding its MSPE)

Holdout Cross Validation

model0 = LinearRegression().fit(X,y)

build model with the train set

MSPE

yhat0 = model0.predict(X_test)
MSPE = mean_squared_error(y_test,yhat0)
MSPE

11521.699081990417

np.sqrt(MSPE)

107.33917775905691

predict with test set

Build Model with all predictors (finding its MSPE)

K-fold Cross Validation (K = 10)

Choose the best set of predictors for the regression model using AIC and Adj R-squared

A function returning SSE, R-squared

```
def get_sse(X,Y):
    model = LinearRegression().fit(X,Y)
    yhat = model.predict(X)
    SSE = mean_squared_error(Y,yhat)*n
    R_squared = model.score(X,Y)
    return SSE, R_squared
```

```
# train sets are X,y
# test sets are X test,y test
```

A function returning SSE, R-squared

```
def get_sse(X,Y):
    model = LinearRegression().fit(X,Y)
    yhat = model.predict(X)
    SSE = mean_squared_error(Y,yhat)*n
    R_squared = model.score(X,Y)
    return SSE, R_squared
```

```
SSE, R_squared = get_sse(X,y)
```

```
SSE
```

2695832.245813148

```
R_squared
```

0.9557279779952305

```
list(X.columns)
['Income',
 'Limit',
 'Rating',
 'Cards',
 'Age',
 'Education',
 'Gender Female',
 'Student Yes',
 'Married Yes',
 'Ethnicity Asian',
 'Ethnicity_Caucasian']
p = len(X.columns)
р
11
list(range(1,p+1))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
```

```
list(X.columns)
['Income',
 'Limit',
 'Rating',
 'Cards',
 'Age',
 'Education',
 'Gender Female',
 'Student Yes',
 'Married Yes',
 'Ethnicity Asian',
 'Ethnicity Caucasian'
p = len(X.columns)
р
11
list(range(1,p+1))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
```

```
# all sets of two column names
list(itertools.combinations(X.columns,2))
[('Income', 'Limit'),
 ('Income', 'Rating'),
 ('Income', 'Cards'),
 ('Income', 'Age'),
 ('Income', 'Education'),
 ('Income', 'Gender Female'),
 ('Income', 'Student Yes'),
 ('Income', 'Married Yes'),
 ('Income', 'Ethnicity_Asian'),
 ('Income', 'Ethnicity_Caucasian'),
 ('Limit', 'Rating'),
 ('Limit', 'Cards'),
```

fit all 2047 models getting their SSE, R-squared

```
SSE_list, R2_list, feature_list, num_features = [],[],[],[]
a nested loop (to find SSE and R-squared from each model)
```

fit all 2047 models getting their SSE, R-squared

```
SSE_list, R2_list, feature_list, num_features = [],[],[],[]
a nested loop (to find SSE and R-squared from each model)
```

```
for k in range(1,p+1):
    for subset in itertools.combinations(X.columns,k):
        feature_list.append(subset)
        num_features.append(len(subset))

X2 = X[list(subset)]
    SSE, R_squared = get_sse(X2,y)

SSE_list.append(SSE)
    R2 list.append(R squared)
```

k is the number of predictors in the model

- ← select a subset of k predictors from the 11 variables adding their names to the lists
- ← subset dataframe X with the columns of selected predictors
- ← build the model, get R-squared

add SSE, R2 to the lists

at the end, each list has 2047 entries

BEST REGRESSION MODEL – FIT ALL MODELS

```
num features[:5]
[1, 1, 1, 1, 1]
feature_list[:5]
[('Income',), ('Limit',), ('Rating',), ('Cards',), ('Age',)]
R2_list[:5]
[0.2200181327359455,
 0.7568493163363379,
 0.7616305879459113,
 0.014850886580138112,
 0.00051904428736715411
SSE_list[:5]
[47495013.18673583,
 14806042.821838915,
 14514899.44059262,
 59988151.130874075,
 60860852.237469081
```

Create a dataframe with 4 columns filled with these 4 lists

	n_features	features	R-squared	SSE
0	1	(Income,)	0.220018	47495013.0
1	1	(Limit,)	0.756849	14806043.0
2	1	(Rating,)	0.761631	14514899.0
3	1	(Cards,)	0.014851	59988151.0
4	1	(Age,)	0.000519	60860852.0

BEST REGRESSION MODEL

```
# create dataframe with the four lists
```

```
df['SSE'] = df['SSE'].round(0)
df[:5]
```

	n_features	features	R-squared	SSE
0	1	(Income,)	0.220018	47495013.0
1	1	(Limit,)	0.756849	14806043.0
2	1	(Rating,)	0.761631	14514899.0
3	1	(Cards,)	0.014851	59988151.0
4	1	(Age,)	0.000519	60860852.0

df.shape (2047, 4)

9 REGRESSION MODELS

df.sample(9, random_state=1)

	n_features	features	R-squared	SSE
309	4	(Income, Cards, Gender_Female, Ethnicity_Cauca	0.242865	46103833.0
1199	6	(Income, Rating, Age, Gender_Female, Ethnicity	0.879609	7330923.0
1755	7	(Limit, Cards, Age, Education, Gender_Female,	0.771386	13920841.0
563	5	(Income, Limit, Rating, Cards, Gender_Female)	0.878893	7374524.0
56	2	(Gender_Female, Student_Yes)	0.073873	56394170.0
546	4	(Education, Gender_Female, Student_Yes, Marrie	0.075743	56280289.0
1293	6	(Limit, Rating, Cards, Education, Gender_Femal	0.765966	14250915.0
181	3	(Cards, Education, Gender_Female)	0.025366	59347877.0
613	5	(Income, Limit, Age, Education, Ethnicity_Asian)	0.872174	7783615.0

9 REGRESSION MODELS

pd.set_option('display.max_colwidth',190)

df.sample(9, random_state=1)

	n_features	features	R-squared	SSE
309	4	(Income, Cards, Gender_Female, Ethnicity_Caucasian)	0.242865	46103833.0
1199	6	(Income, Rating, Age, Gender_Female, Ethnicity_Asian, Ethnicity_Caucasian)	0.879609	7330923.0
1755	7	(Limit, Cards, Age, Education, Gender_Female, Married_Yes, Ethnicity_Caucasian)	0.771386	13920841.0
563	5	(Income, Limit, Rating, Cards, Gender_Female)	0.878893	7374524.0
56	2	(Gender_Female, Student_Yes)	0.073873	56394170.0
546	4	(Education, Gender_Female, Student_Yes, Married_Yes)	0.075743	56280289.0
1293	6	(Limit, Rating, Cards, Education, Gender_Female, Ethnicity_Caucasian)	0.765966	14250915.0
181	3	(Cards, Education, Gender_Female)	0.025366	59347877.0
613	5	(Income, Limit, Age, Education, Ethnicity_Asian)	0.872174	7783615.0

CHOOSE BEST MODELS

pd.set_option('display.max_colwidth',190)

df.sample(9, random_state=1)

n_features		features	R-squared	SSE
309	4	(Income, Cards, Gender_Female, Ethnicity_Caucasian)	0.242865	46103833.0
1199	6	(Income, Rating, Age, Gender_Female, Ethnicity_Asian, Ethnicity_Caucasian)	0.879609	7330923.0
1755	7	(Limit, Cards, Age, Education, Gender_Female, Married_Yes, Ethnicity_Caucasian)	0.771386	13920841.0
563	5	(Income, Limit, Rating, Cards, Gender_Female)	0.878893	7374524.0
56	2	(Gender_Female, Student_Yes)	0.073873	56394170.0
546	4	(Education, Gender_Female, Student_Yes, Married_Yes)	0.075743	56280289.0
1293	6	(Limit, Rating, Cards, Education, Gender_Female, Ethnicity_Caucasian)	0.765966	14250915.0
181	3	(Cards, Education, Gender_Female)	0.025366	59347877.0
613	5	(Income, Limit, Age, Education, Ethnicity_Asian)	0.872174	7783615.0

BEST MODELS BY THE NUMBER OF PREDICTORS

```
# Largest R-squared by n_features
best_r2 = df.groupby(['n_features'])['R-squared'].max()
best_r2
n_features
      0.761631
      0.877077
3
      0.951700
      0.952881
5
      0.954163
      0.955137
7
      0.955429
8
      0.955688
9
      0.955719
10
      0.955724
      0.955728
11
Name: R-squared, dtype: float64
```

BEST MODELS BY THE NUMBER OF PREDICTORS

```
# Largest R-squared by n_features
best_r2 = df.groupby(['n_features'])['R-squared'].max()
best_r2
n features
                       best r2[1] is the R<sup>2</sup> of the best model with one predictor
      0.761631
2
      0.877077
3
      0.951700
      0.952881
5
      0.954163
6
      0.955137
7
      0.955429
8
      0.955688
9
      0.955719
10
      0.955724
       0.955728
11
Name: R-squared, dtype: float64
```

BEST REGRESSION MODEL WITH 1 FEATURE

```
# Largest R-squared by n_features
best_r2 = df.groupby(['n_features'])['R-squared'].max()
best_r2
n features
      0.761631
2
      0.877077
3
      0.951700
      0.952881
5
      0.954163
                                            # Best model with one feature
6
      0.955137
                                            df2 = df[df['R-squared'] == best r2[1]]
7
      0.955429
                                            df2
8
      0.955688
9
      0.955719
10
      0.955724
                                               n_features features R-squared
                                                                                 SSE
11
      0.955728
Name: R-squared, dtype: float64
                                                                   0.761631 14514899.0
                                                          (Rating,)
```

BEST REGRESSION MODEL WITH 2 FEATURES

```
# Largest R-squared by n_features
best_r2 = df.groupby(['n_features'])['R-squared'].max()
best_r2
n features
      0.761631
      0.877077
3
      0.951700
      0.952881
5
      0.954163
                                           # Best model with two features
6
      0.955137
                                           df2 = df[df['R-squared'] == best r2[2]]
7
      0.955429
                                           df2
8
      0.955688
9
      0.955719
10
      0.955724
11
      0.955728
                                                n features
                                                               features R-squared
                                                                                      SSE
Name: R-squared, dtype: float64
                                            12
                                                       2 (Income, Rating)
                                                                         0.877077 7485072.0
```

BEST REGRESSION MODEL WITH 2 FEATURES

```
# Best model with one feature
df2 = df[df['R-squared'] == best_r2[1]]
df2
   n_features features R-squared
                                   SSE
2
          1 (Rating,)
                      0.761631 14514899.0
# Best model with two features
df2 = df[df['R-squared'] == best_r2[2]]
df2
    n_features
                   features R-squared
                                         SSE
12
           2 (Income, Rating) 0.877077 7485072.0
```

BEST REGRESSION MODEL WITH 2 FEATURES

```
# Best model with one feature
df2 = df[df['R-squared'] == best_r2[1]]
df2
   n_features features R-squared
                                    SSE
2
          1 (Rating,)
                      0.761631 14514899.0
# Best model with two features
df2 = df[df['R-squared'] == best r2[2]]
df2
                   features R-squared
    n features
                                          SSE
           2 (Income, Rating)
                            0.877077 7485072.0
12
```

```
for i in range(1,12):
    df2 = df[df['R-squared'] == best_r2[i]]
    print(df2.index.values)

[2]
[12]
[79]
[235]
[564]
[1025]
[1495]
[1833]
[1988]
[2039]
[2046]
```

df2

BEST REGRESSION MODEL WITH 2 FEATURES

```
# Best model with one feature
df2 = df[df['R-squared'] == best_r2[1]]
df2

n_features features R-squared SSE
2     1 (Rating,) 0.761631 14514899.0

# Best model with two features
df2 = df[df['R-squared'] == best r2[2]]
```

```
        n_features
        features
        R-squared
        SSE

        12
        2 (Income, Rating)
        0.877077
        7485072.0
```

```
for i in range(1,12):
    df2 = df[df['R-squared'] == best_r2[i]]
    print(df2.index.values)
[2]
[12]
[79]
[235]
[564]
[1025]
[1495]
[1833]
[1988]
[2039]
[2046]
list1 = list()
for i in range(1,12):
    df2 = df[df['R-squared'] == best r2[i]]
    list1.extend(df2.index.values.tolist())
list1
[2, 12, 79, 235, 564, 1025, 1495, 1833, 1988]
```

DATAFRAME WITH BEST 11 MODELS

df2 = df.iloc[list1].copy()
df2

n_features		features	R-squared	SSE
2	1	(Rating,)	0.761631	14514899.0
12	2	(Income, Rating)	0.877077	7485072.0
79	3	(Income, Rating, Student_Yes)	0.951700	2941135.0
235	4	(Income, Limit, Rating, Student_Yes)	0.952881	2869207.0
564	5	(Income, Limit, Rating, Cards, Student_Yes)	0.954163	2791149.0
1025	6	(Income, Limit, Rating, Cards, Age, Student_Yes)	0.955137	2731792.0
1495	7	(Income, Limit, Rating, Cards, Age, Student_Yes, Ethnicity_Asian)	0.955429	2714033.0
1833	8	(Income, Limit, Rating, Cards, Age, Student_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.955688	2698241.0
1988	9	(Income, Limit, Rating, Cards, Age, Education, Student_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.955719	2696376.0
2039	10	(Income, Limit, Rating, Cards, Age, Education, Student_Yes, Married_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.955724	2696091.0
2046	11	(Income, Limit, Rating, Cards, Age, Education, Gender_Female, Student_Yes, Married_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.955728	2695832.0

DATAFRAME WITH BEST 11 MODELS

```
df2 = df.iloc[list1].copy()
df2
```

best predictor is Rating,
Worst predictor is Gender

	n_features	features	R-squared	SSE
2	1	(Rating,)	0.761631	14514899.0
12	2	(Income, Rating)	0.877077	7485072.0
79	3	(Income, Rating, Student_Yes)	0.951700	2941135.0
235	4	(Income, Limit, Rating, Student_Yes)	0.952881	2869207.0
564	5	(Income, Limit <mark>, Rating,</mark> Cards, Student_Yes)	0.954163	2791149.0
1025	6	(Income, Limit, Rating, Cards, Age, Student_Yes)	0.955137	2731792.0
1495	7	(Income, Limit, Rating, Cards, Age, Student_Yes, Ethnicity_Asian)	0.955429	2714033.0
1833	8	(Income, Limit, Rating, Cards, Age, Student_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.955688	2698241.0
1988	9	(Income, Limit, Rating, Cards, Age, Education, Student_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.955719	2696376.0
2039	10	(Income, Limit, Rating, Cards, Age, Education, Student_Yes, Married_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.955724	2696091.0
2046	11	(Income, Limit, Rating, Cards, Age, Education, Gender_Female, Student_Yes, Married_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.955728	2695832.0

DATAFRAME WITH BEST 11 MODELS

df2 = df.iloc[list1].copy()
df2

Cannot compare these models using R-squared

n_features		features	R-squared	SSE
2	1	(Rating,)	0.761631	14514899.0
12	2	(Income, Rating)	0.877077	7485072.0
79	3	(Income, Rating, Student_Yes)	0.951700	2941135.0
235	4	(Income, Limit, Rating, Student_Yes)	0.952881	2869207.0
564	5	(Income, Limit, Rating, Cards, Student_Yes)	0.954163	2791149.0
1025	6	(Income, Limit, Rating, Cards, Age, Student_Yes)	0.955137	2731792.0
1495	7	(Income, Limit, Rating, Cards, Age, Student_Yes, Ethnicity_Asian)	0.955429	2714033.0
1833	8	(Income, Limit, Rating, Cards, Age, Student_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.955688	2698241.0
1988	9	(Income, Limit, Rating, Cards, Age, Education, Student_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.955719	2696376.0
2039	10	(Income, Limit, Rating, Cards, Age, Education, Student_Yes, Married_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.955724	2696091.0
2046	11	(Income, Limit, Rating, Cards, Age, Education, Gender_Female, Student_Yes, Married_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.955728	2695832.0

ADJUSTER R-SQUARED FORMULA

$$adj R^2 = 1 - \frac{MSE}{MST}$$

$$= 1 - \frac{\frac{\overline{SSE}}{n-p-1}}{\frac{\overline{SST}}{n-1}}$$

$$adj R^2 = 1 - \frac{n-1}{n-p-1} \frac{SSE}{SST}$$

ADJUSTER R-SQUARED FORMULA

$$1 - adj R^2 = \frac{n-1}{n-p-1} \frac{SSE}{SST}$$

$$1 - adj R^2 = \frac{n-1}{n-p-1} (1 - R^2)$$

$$adj R^2 = 1 - \frac{n-1}{n-p-1} (1-R^2)$$

ADJUSTER R-SQUARED AND AIC FORMULAS

$$adj R^2 = 1 - \frac{n-1}{n-p-1} (1-R^2)$$

$$AIC = n \log \left(\frac{SSE}{n}\right) + 2p$$

BEST REGRESSION MODEL

DATAFRAME WITH BEST 11 MODELS

df2

	n_features	features	adj_R- squared	AIC
2	1	(Rating,)	0.760831	3238.071117
12	2	(Income, Rating)	0.876249	3041.391616
79	3	(Income, Rating, Student_Yes)	0.951210	2763.157093
235	4	(Income, Limit, Rating, Student_Yes)	0.952242	2757.729130
564	5	(Income, Limit, Rating, Cards, Student_Yes)	0.953383	2751.454427
1025	6	(Income, Limit, Rating, Cards, Age, Student_Yes)	0.954219	2747.005766
1495	7	(Income, Limit, Rating, Cards, Age, Student_Yes, Ethnicity_Asian)	0.954361	2747.049141
1833	8	(Income, Limit, Rating, Cards, Age, Student_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.954470	2747.298449
1988	9	(Income, Limit, Rating, Cards, Age, Education, Student_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.954345	2749.091020
2039	10	(Income, Limit, Rating, Cards, Age, Education, Student_Yes, Married_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.954192	2751.059309
2046	11	(Income, Limit, Rating, Cards, Age, Education, Gender_Female, Student_Yes, Married_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.954037	2753.030488

BEST MODELS

df2

n,	_features			features	adj_R- squared	AIC
2	1			(Rating,)	0.760831	3238.071117
12	2			(Income, Rating)	0.876249	3041.391616
79	3			(Income, Rating, Student_Yes)	0.951210	2763.157093
235	4			(Income, Limit, Rating, Student_Yes)	0.952242	2757.729130
564	5			(Income, Limit, Rating, Cards, Student_Yes)	0.953383	2751.454427
1025	6		best AIC model	(Income, Limit, Rating, Cards, Age, Student_Yes)	0.954219	2747.005766
1495	7		(Incor	me, Limit, Rating, Cards, Age, Student_Yes, Ethnicity_Asian)	0.954361	2747.049141
1833	8	best Adj-R ² model	(Income, Limit, Rating, Car	ds, Age, Student_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.954470	2747.298449
1988	9		(Income, Limit, Rating, Cards, Age, Ed	ucation, Student_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.954345	2749.091020
2039	10	(Income, Lim	nit, Rating, Cards, Age, Education, Stud	ent_Yes, Married_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.954192	2751.059309
2046	11	(Income	, Limit, Rating, Cards, Age, Education, 0	Gender_Female, Student_Yes, Married_Yes, Ethnicity_Asian, Ethnicity_Caucasian)	0.954037	2753.030488

AIC Best Model

AIC BEST MODEL

```
# AIC best model has 6 features

row6 = df2[df2.AIC == df2.AIC.min()]
row6
```

n_fe	atures	features	adj_R-squared	AIC				
1025	6	(Income, Limit, Rating, Cards, Age, Student_Yes)	0.954219	2747.005766				
# get predictor names of AIC best model								
row6.features.iloc[0]								
('Income	', 'L	imit', 'Rating', 'Cards', 'Age',	'Student_Ye	s')				

AIC BEST MODEL - Create DataFrame X1 with columns for AIC best model

```
list1 = list(row6.features.iloc[0])
list1

['Income', 'Limit', 'Rating', 'Cards', 'Age', 'Student_Yes']

# make dataset with these columns only

X1 = X[list1]
X1[:5]
```

	Income	Limit	Rating	Cards	Age	Student_Yes
82	23.672	4433	344	3	63	0
367	23.793	3615	263	2	70	0
179	58.026	7499	560	5	67	0
27	32.793	4534	333	2	44	0
89	59.530	7518	543	3	52	0

Adj. R-squared Best Model

adj-R2 BEST MODEL

```
max_R2 = df2['adj_R-squared'].max()
max_R2
```

0.9544702381591676

```
df2[df2['adj_R-squared'] == max_R2]
```

n_features features adj_R-squared

1833 8 (Income, Limit, Rating, Cards, Age, Student_Yes, Ethnicity_Asian, Ethnicity_Caucasian) 0.95447

Adj-R2 best model has 8 features

adj-R2 BEST MODEL

```
row8 = df2[df2['adj_R-squared'] == max_R2]
row8
      n features
                                                                          features adj_R-squared
1833
             8 (Income, Limit, Rating, Cards, Age, Student_Yes, Ethnicity_Asian, Ethnicity_Caucasian)
                                                                                        0.95447
# get feature names of adj-R2 best model
row8.features.iloc[0]
('Income',
 'Limit',
 'Rating',
 'Cards',
 'Age',
 'Student Yes',
 'Ethnicity Asian',
 'Ethnicity_Caucasian')
```

adj-R2 BEST MODEL - Create DataFrame X2 with columns for Adj-R2 best model

```
# make dataset X2 with these columns only
list2 = list(row8.features.iloc[0])
X2 = X[list2]
X2[:5]
```

	Income	Limit	Rating	Cards	Age	Student_Yes	Ethnicity_Asian	Ethnicity_Caucasian
82	23.672	4433	344	3	63	0	0	1
367	23.793	3615	263	2	70	0	0	0
179	58.026	7499	560	5	67	0	0	1
27	32.793	4534	333	2	44	0	0	0
89	59.530	7518	543	3	52	0	0	0

Use Holdout Cross-validation to compare Best Models

Which is best for prediction?

COMPARE MODELS – FULL Model

Validation Approach

```
# MSPE of full (all predictors) model

model0 = LinearRegression().fit(X,y)
yhat0 = model0.predict(X_test)

MSPE = mean_squared_error(y_test,yhat0)
np.sqrt(MSPE)

107.33917775905691
```

Best Adj R-squared Model

```
model2 = LinearRegression().fit(X2,y)

X2_test = X_test[list2]
yhat2 = model2.predict(X2_test)
```

```
MSPE = mean_squared_error(y_test,yhat2)
np.sqrt(MSPE)
```

Best AIC Model

```
model1 = LinearRegression().fit(X1,y)

X1_test = X_test[list1]
yhat1 = model1.predict(X1_test)

MSPE = mean_squared_error(y_test,yhat1)
np.sqrt(MSPE)

105.78913727639237

# AIC model is best predictive model
```

Use Kfold Cross-validation to compare Best Models

Which is best for prediction?

```
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
```

full model -dataset X0

best adj-R2 model -dataset X2

Cesar Acosta Ph.D.

best AIC model -dataset X1

AIC model is best predictive model

Prediction

PREDICTION WITH BEST AIC MODEL

- Predict the Balance of a credit card customer with median values for income, credit limit, credit rating, number of credit cards, and age
- Assume that the student status of the customer is the most frequent category

PREDICTION WITH BEST AIC MODEL

```
newval = X1.head(1).copy()
newval
```

Income Limit Rating Cards Age Student_Yes 0 14.891 3606 283 2 34 0

```
newval.Income = np.median(X1.Income)
newval.Limit = np.median(X1.Limit)
newval.Rating = np.median(X1.Rating)
newval.Cards = np.median(X1.Cards)
newval.Age = np.median(X1.Age)
```

PREDICTION WITH BEST AIC MODEL

```
newval = X1.head(1).copy()
newval
```

Income Limit Rating Cards Age Student_Yes 0 14.891 3606 283 2 34 0

```
newval.Income = np.median(X1.Income)
newval.Limit = np.median(X1.Limit)
newval.Rating = np.median(X1.Rating)
newval.Cards = np.median(X1.Cards)
newval.Age = np.median(X1.Age)
```

```
# most common student status

pd.value_counts(X1.Student_Yes)

0     360
1     40
Name: Student_Yes, dtype: int64

Most common category is non-student
```

newval predict Balance of this new customer

	Income	Limit	Rating	Cards	Age	Student_Yes
0	33.1155	4622.5	344.0	3.0	56.0	0

PREDICTION

```
# fit model and predict Balance
```

```
model = LinearRegression().fit(X1,y0)
model.predict(newval)
```

array([538.52330854])

Predicted Customer Balance is 538.52 dollars